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Analysis of inverse heat transfer for
two-phase solidification problem in a
finned phase-change material storage

Siamak Bokaei1, 3, Faramarz Talati2

Abstract. In this paper, solution of the inverse heat conduction problems (IHCP) are pre-
sented in a finned phase-change material (PCM) storage and an imposed boundary condition type
three on the vertical walls. At first direct heat transfer problem during solidification process were
studied then based on sensitivity analysis the inverse problem solved numerically by Levenberg–
Marquardt (LM) methods using temperature distribution and speed of freezing front defined by
heat capacity methods, at least the temperature distribution on the boundary of PCM storage have
been predicted.
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1. Introduction

Uses of PCMs have expanded notably in two recent decades. Because of the low
thermal conductivity of the PCMs, heat transfer enhancement techniques such as
fins have to be used to increase the heat-transfer fraction in the store. Generally
heat conductivity problems can be divided into the two direct and inverse cate-
gories. In the direct problems which are more applicable, geometry, thermo-physical
properties and initial and boundary conditions are determined. In the inverse heat
conductivity problems (IHCP) some of these data are unknown and extra informa-
tion which are usually measured temperatures inside the solution area or on the
boundary are known instead. In the solidification process, direct problem consists
in a calculation of temperature distribution and freezing front position by simplified
analytical models and numerical approaches, whilst inverse problem consists in a
calculation of boundary conditions or other parameters using temperature distribu-
tion at a specified number of locations inside the domain. Several methods have
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been presented for solving an inverse heat transfer problem such that the problem
is solved by minimizing a target function along an iterative procedure and in this
article Levenberg–Marquardt [1, 2] method have been used. This technique is quite
efficient for solving linear and nonlinear parameter estimation problems. However,
difficulties may arise in nonlinear estimation problems involving a large number of
unknown parameters, because of the time spent in the computation of the sensitivity
matrix.

2. Direct problem

In the present work, the solidification process is investigated in a finite two-
dimensional PCM storage with horizontal internal plate fins imposed boundary con-
dition type three.

2.1. Analytical model

The heat equation for the PCM and enclosure with the initial and boundary
conditions ere described by the equations
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T (0, y, t) = T (lf , y, t) = Tw . (3)

Here, Ti is the initial temperature, Tw is the temperature of the wall, k denotes
the thermal conductivity, ρ is the specific mass, Cp stands for the specific heat at a
constant pressure. The energy balance for the solid–liquid interface with the initial
conditions reads[
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where ks is the thermal conductivity of the solid phase and kl is the thermal con-
ductivity of the liquid phase

2.2. Numerical model

The most commonly used numerical methods are the effective heat-capacity
method and the enthalpy method. In this paper, the direct problem is solved nu-
merically in two dimensions using the effective heat capacity method with a narrow
temperature range, ∆T = 2 ◦C [3, 4].
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3. Definition of the inverse heat transfer problem

The target of an inverse problem is finding the inverse operatorQ−1 for which

Q [P (t)] = T (x, t)→ P (t) = Q−1 [T (x, t)] (5)

such that, in the mentioned inverse problem, P (t) is the unknown boundary tem-
perature distribution.

3.1. Levenberg–Marquardt method for solving an inverse
problem

Inverse problems for parameter estimation are usually solved by minimizing a
target function along an iterative procedure. In this method, the target function S
is defined as

S(P ) =

l∑
i=1

[Yi − Ti(P )]
2
, (6)

where P is the vector of unknown parameters, Ti denotes the estimated temperature
at time ti and Yi are the measured temperatures.

Levenberg–Marquardt method is quite efficient for solving linear and nonlinear
parameter estimation problems. However, difficulties may arise in nonlinear esti-
mation problems involving a large number of unknown parameters, because of the
time spent in the computation of the sensitivity matrix. The solution of inverse
parameter estimation by this technique requires the computation of the sensitivity
matrix J , whose elements are the sensitivity coefficients Jij defined as

Jij =
∂Ti
∂Pj

, (7)

where Pj is the jth unknown parameter (their number being N). The iterative
procedure for finding vector P whose components are the unknown parameters of
heat transfer problem will be as below:

P k+1 = P k +
[(
Jk
)T
Jk
]−1 (

Jk
)T [

Y − T (P k)
]
. (8)

Problems satisfying
∣∣JJT

∣∣ = 0 are very ill-conditioned. Inverse heat transfer
problems are generally ill-conditioned, especially near the initial estimate used for the
unknown parameters. The Levenberg–Marquardt method alleviates such difficulties
by utilizing an iterative procedure in the form [5, 6]:

P k+1 = P k +
[(
Jk
)T
Jk + µkΩk

]−1 (
Jk
)T [

Y − T
(
P k
)]
, (9)

where µk is a positive scalar called damping parameter and Ωk is a diagonal matrix
defined as

Ωk = diag
[(
Jk
)T
Jk
]
. (10)
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The purpose of the matrix term µkΩk included in the above equation is to damp
oscillation and instabilities due to ill-conditioned character of the problem.

Suppose that temperature measurements Y = (Y1, Y2, ..., Yl) are given at times
ti, i = 1, 2, ..., I. Also an initial estimate P 0 is available for the vector of unknown
parameters P . Choose a value for µ0, say µ0 = 0.001. Now the algorithm of
computation consists of the following steps:

Step 1. Solve the direct heat transfer problem given by equations (1) with
the available estimate P k in order to obtain the temperature vector T

(
P k
)

=
(T1, T2, ..., TL).

Step 2. Compute S(P k) from equation (6).
Step 3. Compute the sensitivity matrix Jk defined by equation (7) and then the

matrix Ωk given by equation (10), using the current values of P k.
Step 4. Solve the following linear system of algebraic equations, obtained from

the iterative procedure of the Levenberg–Marquardt method in order to compute
the new estimate P k+1:

P k+1 = P k +
[(
Jk
)T
Jk + µkΩk

]−1 (
Jk
)T [

Y − T
(
P k
)]
. (11)

Step 5. Solve the direct problem with the new estimate P k+1 in order to find
T (P k+1). Then compute S(P k+1), as defined by equation (11).

Step 6. If S(P k+1) ≥ S(P k), replace µk by 10µk and return to Step 4.
Step 7. If S(P k+1) < S(P k), accept the new estimate P k+1 and replace µk by

0.1µk.
Step 8. Check the stopping criteria given by the following equations (12 a, b,

c). Stop the iterative procedure if any of them is satisfied. Otherwise, replace k by
k + 1 and return to Step 3.

S
(
P k+1

)
≤ ε1,

∥∥∥(Jk
)T [

Y − T
(
P k
)]∥∥∥ ≤ ε2, ∥∥P k+1 − P k

∥∥ ≤ ε3 , (12)

where ε1, ε2 and ε3 are selected tolerances.

4. Discussion and results

A scheme of the two dimensional symmetry cell of the PCM storage with an
internal plate fin is shown in Fig. 1. The thermophysical properties of paraffin as a
phase change material and aluminum as a fin metal are given in Table 1.

In this paper lf , lc, and fins thickness are 0.03m, 0.01m and 0.5m, respectively.
Furthermore, the initial temperature is 298.15K, the material being considered in
the liquid form. The boundary condition is of the convection type, the convection
coefficient is assumed 10W.m−2 K] and ambient temperature is 288.15K. The op-
timized mesh has been found out 24×67. The resultant temperature distribution
from solution of direct convection problem is shown in Figs. 2–5.
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Fig. 1. Scheme of the two dimensional symmetry cell of the PCM storage

Table 1. Thermophysical properties of materials

Property Paraffin Aluminum

Density (kgm−3) 770 2710

Thermal conductivity (W.m−1K−1) 0.185 174

Heat capacity, liquid (J.kg−1 K−1) 2400 -

Heat capacity, solid (J.kg−1 K−1) 1800 935

Latent heat of fusion (J.kg−1) 124098 -

Peak solidification temperature (◦C) 25 -

Fig. 2. Temperature distribution (t = 200 s), Tmin = 288.15K, Tmax = 298.15K,
scale: light color−→dark color means Tmin −→ Tmax

Our target is to find the temperature distribution along the boundaries. To
achieve the results, we assume that the boundary condition is a third rank poly-
nomial, si that we have 4 unknown parameters. By definition in equation (7) the
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Fig. 3. Temperature distribution (t = 400 s), Tmin = 288.15K, Tmax = 292.21K,
scale: light color−→dark color means Tmin −→ Tmax

Fig. 4. Temperature distribution (t = 600 s), Tmin = 288.15K, Tmax = 289.61K,
scale: light color−→dark color means Tmin −→ Tmax

Fig. 5. Temperature distribution (t = 600 s), Tmin = 288.15K, Tmax = 288.32K,
scale: light color−→dark color means Tmin −→ Tmax

sensitivity factors are depicted in Figs. 6–9.

Fig. 6. Sensitivity factors for unknown parameter P1
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Fig. 7. Sensitivity factors for unknown parameter P2

Fig. 8. Sensitivity factors for unknown parameter P3

As illustrated, the resultant sensitivity factors shows no linear dependence so we
could use Levenberg–Marquart freely. Furthermore, we could see that the resulting
sensitivity factors have a growth in their scale, since there is a great difference
between the unknown parameters. It could be expected to have large scales like
in plots plot J(p4) and J(p3) because, as shown in equation (7), a small effect on
unknown parameters could cause tremendous effect on sensitivity factor. Table 2
contains the initial estimates for unknown parameters.

Table 2. Initial estimates for unknown parameters

Unknown parameters P1 P2 P3 P4

Initial guess 300 0.01 0.001 0.0001
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Fig. 9. Sensitivity factors for unknown parameter P4

The information about solving sequence is presented in Table 3. Using the
Levenberg–Marquart method we achieve equation (13):

T = −5 · 10−9t3 + 9 · 10−6t2 + 6.61 · 10−3t+ 298.123 . (13)

Table 3. Information about solving sequence

Error Iteration number Calculation time Boundary condition

Initial guess 7 3 hours 37 minutes 12 seconds convection

5. Conclusion

We show that by implementing the Levenberg–Marquardt method, in finned
PCM storage case, we could solve inverse heat transfer problem to achieve unknown
parameters of estimated polynomial function of boundary and obtained satisfactory
results. We solve direct problem by heat capacity method, and used sensitivity
analyses as a fundamental part of Levenberg–Marquardt method. Another strong
method which we can use is Conjugate Lagrange method, which we suggest to cal-
culate and compare with Levenberg–Marquardt method. This particular and strong
method has no need to estimate function.
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